Many real world data can be modeled by a graph with a set of nodes interconnected to each other by multiple relationships. Such a rich graph is called multilayer graph. We introduce a novel visual platform to query, explore and support the analysis of large multilayer graphs.

**Contributions:**
- A new visual platform [1] that allows to query large multilayer graphs, visualize retrieved results and suggest query extensions based on the underlying graph structure and the current query results.
- Interactive mechanisms to support the synergy between the user and the underlying multi-graph query engine named SuMGra [2].

**Scenario:** A user is interested to gain knowledge about authors who have published in the Visualization and the Data Mining/Data Base domains from the DBLP co-authorship network. The goal is to retrieve groups of authors that collaborate together and one of them has publications in both fields.

**Query Construction and Suggestions**

The Query View allows to visually build the query, e.g. where an author published a TVCG paper with one author and he/she also published an ICDM and a KDD paper with another author (a).

Once the construction of the query is finished, the user sends the query to the SuMGra engine (b). Next, the engine queries the graph (c) in order to retrieve the results (d).

Based on the retrieved results and the graph, the query mechanism suggests k new edges using visual representations (e.g. pie charts) (j), with the possibility to refine the previous query and execute it again.

**Visualization and Exploration of Results**

The Graph View shows the graph and allows navigate/explore results at different levels of detail:

- **Overview (e):** show the results locations using a heatmap representation.
- **Details (f):** allow the user to inspect particular nodes involved in the results (g).

The Embeddings View allows the user to visualize the list of results (h) for a set of selected nodes (g) (e.g. results involving S.Liu and Y.Song). From this list, the user can select up to five results that will be visualized on the Graph View by using a kelp-based approach (i).

---